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B1. Full model specification: first interactions 

We first fit models with continuous variables representing social effects. The 

corresponding full model specifies the rate of first attempted method l at locus k for 

individual i in group j at time t as: 

 

𝜆!"#$ 𝑡 = 𝜆!,! 𝑡 𝑒𝑥𝑝 𝑂!" + 𝜑!" + 𝛽!"𝐿𝑆!"# 𝑡 + 𝛽!"𝐿𝐺!" 𝑡 + 𝛽!"𝐶𝑆!"#$ 𝑡

+ 𝛽!"𝐴𝑆!"#$ 𝑡 1− 𝑧!"#$ 𝑡  

where 𝜆!,! 𝑡  is an unspecified baseline function assumed to be the same for all of group 

j across all options;  𝑂!" is a parameter allowing for differences in difficulty between the 

four options, with 𝑂!! = 0 set as baseline; 𝜑!" is a linear predictor containing variables 

that vary between individuals (sex, age, and rank) and an individual random effect; 

𝐿𝑆!"# 𝑡  takes the value 1 if i interacted with locus k previously using either method prior 

to t (LS signifies locus specific asocial learning) and is 0 otherwise; 𝐿𝐺!" 𝑡 takes the 

value 1 if i has interacted with the task at either locus using either method (LG signifies 

location general asocial learning) prior to time t and is 0 otherwise; 𝛽!  are fitted 



parameters each giving the effect of a variable X; 𝑧!"#$ 𝑡  takes the value 1 if i has 

previously interacted with locus k using method l, or if i was a seeded demonstrator for 

that option, and is 0 otherwise: the 1− 𝑧!"#$ 𝑡  thus ensures that the model only 

models the rate of first interaction using each option. The remaining terms model social 

influences on learning, which we now define. The action specific variable is given by:  

 

𝐴𝑆!"#$ 𝑡 = 𝑜!"#$ 𝑡 , 

 

where 𝑜!"#$ 𝑡  is the  number of observations of others interacting with the task at locus k 

using method l. The context specific variable is then observations summed across the 

relevant locus: 

 

𝐶𝑆!"#$ 𝑡 = 𝑜!"#$ 𝑡
!

!!!

 

 

We fitted models with every combination of variables given in the full model using the 

coxme (Therneau 2012) and MuMIn (Bartoń 2014) packages, calculating the AICc in 

each case, using the integrated likelihood and taking the number of events as the sample 

size. This enabled us to obtain Akaike weights for each model and thus obtain the total 

support for each variable (Burnham & Anderson 2002).  

 

We then re-fitted the models with binary variables for the social effects (see main text). 

𝐴𝑆!"#$ 𝑡  was replaced with 𝐴𝑆!"#$ 𝑡 , where 𝐴𝑆!"#$ 𝑡 = 1 if 𝐴𝑆!"#$ 𝑡 > 0 and is 0 



otherwise, with corresponding binary variable 𝐶𝑆!"#$ 𝑡  replacing 𝐶𝑆!"#$ 𝑡 . The support 

was found to be 39.8x greater for the set of models with binary social effects, so we 

report the results of the binary models in the main text  

 

In the main text we report the support (total Akaike weight) for each variable, along with 

its model-averaged estimate and unconditional standard error. We also report the back-

transformed (exponential) estimate and 95% unconditional confidence intervals, which 

are back-transformed Wald confidence intervals calculated from the unconditional 

standard error, and thus allow for model selection uncertainty. 

 

B2. Ruling out small-scale local enhancement 

The CS effect found in the main analysis could be explained by a small-scale local 

enhancement effect whereby observation of an interaction at locus k on a specific 

apparatus would attract observers to that location. In contrast, stimulus enhancement and 

observational conditioning predict that the effect would generalise between the 

corresponding loci on the two different task apparatuses whereas small-scale local 

enhancement does not. Under local enhancement, each crow’s first interaction using each 

locus would tend to be at the same apparatus at which they had observed another crow 

interacting with that locus.  

 

We assessed whether each crow’s choice of apparatus for its first interaction with each 

locus was influenced by the apparatuses at which it had seen other crows interacting, if 

any. We used a generalised linear mixed model (GLMM) with a binary response variable 



(1 = right apparatus; 0 = left apparatus) and logit link function, with individual as a 

random effect. The two binary predictor variables were a) whether the subject had 

previously seen another crow interacting with the right apparatus and b) whether the 

subject had previously seen another crow interacting with the left apparatus. If local 

enhancement was responsible for the CS effect, we expect a) to be positive and b) to be 

negative. 

 

We found that this was not the case (see Figure 3 in the main text): in the absence of 

observation there was an underlying tendency to prefer the left box (probability of 

choosing left = 0.90; 95% U.C.I. = 0.56 - 0.99), with some evidence that the odds of 

using the right box were increased by observations at both the right box (support = 66%; 

estimate = 4.96x; 95% U.C.I. = 0.90 - 27.5) and the left box (support = 50%; estimate = 

5.51x; 95% U.C.I. = 0.47 – 65.1). The pattern could be explained by proximity: the left 

box was located nearer to the perches, which is where crows approached the table from. 

The key point is that we would expect a clear bias in favor of the apparatus observed if 

local enhancement was responsible for the CS effect observed, and this pattern is not 

shown. 

 

B3. Full model specification: ‘discovered’ to ‘solved’ transition 

If imitation or emulation were operating, crows would, through observation, be learning 

something about how to interact with the task to obtain food, so we might expect 

observation to impact on how quickly the crows obtain food using a specific option. The 

model described in section B1 models i’s rate of transition from a naïve state for method l 



at locus k to having ‘discovered’ that option: i.e. a state in which i is attempting to extract 

food from the task at locus k using method l. We can further model the rate at which 

crows transition from the ‘discovered’ state to a ‘solved’ state, in which they have 

successfully extracted food from the task at locus k using method l, analogous to the 

model developed by Atton et al. (2012). We modeled 𝜆!,!"#$ 𝑡  the rate of solving at 

locus k using method l by individual i in group j as:  

 

𝜆!,!"#$ 𝑡 = 𝜆!!,! 𝑡 𝑒𝑥𝑝 𝑂!" + 𝜑!" + 𝛽!"𝐿𝑆!"# 𝑡 + 𝛽!"𝐿𝐺!" 𝑡 + 𝛽!"𝐶𝑆!"#$ 𝑡

+ 𝛽!"𝐴𝑆!"#$ 𝑡 𝑧!"#$ 𝑡 1− 𝑦!"#$ 𝑡  

 

where most terms are defined the same as for the model of first interaction, above, except 

𝜆!!,! 𝑡  is an unspecified baseline rate function for solving for group j, and 𝑦!"#$ 𝑡 = 1 

when i has solved the task at locus k using method l prior to time t, or if i is a seeded 

demonstrator for that option, and is 0 otherwise. Therefore, the 𝑧!"#$ 𝑡 1− 𝑦!"#$ 𝑡 =

1 if i has interacted with the task at locus k using method l prior to time t, but not solved 

the task at locus k using method l prior to time t, and is 0 otherwise. This term ensures 

that we are modeling the rate of transition from the ‘discovered’ to the ‘solved’ state. We 

used the same procedure as described in section B1 to fit and compare models, again 

considering binary versions of each social effect. 

 

B4. Relationship to existing statistical models for analyzing diffusion data 



Here we provide information about how the modeling approach described in sections B1 

and B3 relates to those models previously used in diffusion studies of social learning in 

non-human animals, primarily to aid other social learning researchers wishing to choose a 

modeling approach for their own data. The task was designed to be similar to that used by 

Hoppitt et al. (2012) in their diffusion experiment on meerkats: i.e., the task is designed 

such that the pattern of generalization of social effects among options can be used to infer 

the social learning mechanisms in operation. Hoppitt et al. (2012) developed a Stochastic 

Mechanism Fitting Model (SMFM), which does not just model the social influences on 

the rate of first interaction with each option, but also the successive interactions with each 

option. The SMFM enabled Hoppitt and colleagues to distinguish transient social effects 

on behaviour from mechanisms that enable learning directly from observing others.  

 

In this study, we were interested primarily in the option specificity of the social learning 

mechanisms, and not the transient versus direct learning distinction. Consequently, we 

decided to adopt a simpler model which models only the transition from a naïve state to a 

‘discovered’ state and the transition from the ‘discovered’ state to the ‘solved’ state for 

each option. This is similar in structure to the multistate model developed by Atton et al 

(2012), which they applied to a diffusion experiment on sticklebacks. However, Atton 

and colleague’s model is an extension of Network Based Diffusion Analysis (NBDA: 

Franz & Nunn 2009), so the predictor variables corresponding to the social effects are the 

social network connections to other individuals that have already discovered or solved 

each of the task options. The assumption, as with most applications of NBDA, was that 



the network connection from individual j to individual i, aij, acts as a proxy for the rate at 

which i has opportunities for social learning from j. 

 

In this study, we were able to obtain a record of who is likely to have observed each 

interaction with the task, and so we can model the effects of observation directly (as in 

Hoppitt et al.’s SMFM) without having to rely on social network connections as a proxy. 

Our model is therefore similar to that developed by Hobaiter et al. (2014), who also 

directly modeled the effect of observations on the rate at which chimpanzees first 

performed two novel foraging innovations, though Hobaiter and colleagues do not require 

the multistate model used here. Hobaiter et al. describe their model in the context of a 

dynamic NBDA, noting that NBDA can be expanded to operate on a dynamic network 

that changes over time: with the aij replaced with aij(t). In their case the aij(t) terms of the 

dynamic network are simply the number of times that i has observed j prior to time t.  

Our model can also be seen as part of the dynamic NBDA framework: above, in the 

interests of accessibility, we describe our model in the context of a Cox model framework 

since this is a more widely used and less specialised statistical model. In contrast, 

Hobaiter and colleagues consider a number of function forms for their dynamic NBDA, 

only some of which fit within the Cox model framework. Hobaiter et al. discuss the 

advantages of using a dynamic NBDA over a standard NBDA when the data are 

available, and also compare the performance of the model to an NBDA using a static 

network. 
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